miércoles, 19 de agosto de 2015

50 Aniversario del descubrimiento de la insulina



La insulina (del latín insula, "isla") es una hormona polipeptídica formada por 51 aminoácidos, producida y secretada por las células beta de los islotes de Langerhans del páncreas.
La insulina interviene en el aprovechamiento metabólico de los nutrientes, sobre todo con el anabolismo de los glúcidos.
La síntesis de la insulina pasa por una serie de etapas. Primero la preproinsulina es creada por un ribosoma en el retículo endoplasmático rugoso (RER), que pasa a ser (cuando pierde su secuencia señal) proinsulina. Esta es importada al aparato de Golgi, donde se modifica, eliminando una parte y uniendo los dos fragmentos restantes mediante puentes disulfuro.
Gran número de estudios demuestran que la insulina es una alternativa segura, efectiva, bien tolerada y aceptada para el tratamiento a largo plazo de la diabetes tipo 1 y la diabetes tipo 2, incluso desde el primer día del diagnóstico.
Frederick Grant BantingCharles BestJames Collip, y J.J.R. Macleod de la Universidad de TorontoCanadá, descubrieron la insulina en 1922. El Doctor Banting recibió el Premio Nobel de Fisiología o Medicina por descubrir esta hormona aunque se demostró que el verdadero descubridor fue Nicolae Paulescu en 1921.
La insulina es una hormona "Anabólica" por excelencia: permite disponer a las células del aporte necesario de glucosa para los procesos de síntesis con gasto de energía. De esta manera, mediante glucólisis y respiración celular se obtendrá la energía necesaria en forma de ATP. Su función es la de favorecer la incorporación de glucosa de la sangre hacia las células: actúa siendo la insulina liberada por las células beta del páncreas cuando el nivel de glucosa en sangre es alto. El glucagón, al contrario, actúa cuando el nivel de glucosa disminuye y es entonces liberado a la sangre. Por su parte, la Somatostatina, es la hormona encargada de regular la producción y liberación tanto de glucagón como de insulina. La insulina se produce en el Páncreas en los "Islotes de Langerhans", mediante unas células llamadas Beta. Una manera de detectar si las células beta producen insulina, es haciendo una prueba, para ver si existe péptido C en sangre. El péptido C se libera a la sangre cuando las células Beta procesan la proinsulina, convirtiéndola en insulina. Cuando solo entre un 10 y un 20 % de las células Beta están en buen estado, comienzan a aparecer los síntomas de la diabetes, pasando primero por un estado previo denominado luna de miel, en el que el páncreas aún segrega algo de insulina.
La insulina tiene una importante función reguladora sobre el metabolismo, sobre el que tiene los siguientes efectos:
  • Estimula la glucogenogénesis.
  • Inhibe la glucogenolisis.
  • Disminuye la glucosecreción hepática
  • Promueve la glucólisis.
  • Favorece la síntesis de triacilgleceroles (triglicéridos). Para ello, estimula la producción de acetil-CoA (por ejemplo, al acelerar la glucólisis), y también estimula la síntesis de ácidos grasos (componentes de los triacilgliceroles) a partir de la acetil-CoA.
  • Estimula la síntesis de proteínas.

lunes, 10 de agosto de 2015

Victor Babes



Victor Babeș (* Viena4 de julio de 1854 - Bucarest19 de octubre de 1926) fue un médicobiólogo rumano y uno de los primeros bacteriólogos.
Nacido en Viena, en el seno de una familia procedente de Banato, estudió en Budapest y Viena.
Trabajo intensamente en rabialepradifteriatuberculosis.
En 1885 aisló al protozoario Babesia, parásito de la Ixodes scapularis, que causa la rara y severa infección "babesiosis", llamada así en su honor.

lunes, 3 de agosto de 2015

Microscopio electrónico



Un microscopio electrónico es aquél que utiliza electrones en lugar de fotones o luz visible para formar imágenes de objetos diminutos. Los microscopios electrónicos permiten alcanzar ampliaciones antes que los mejores microscopios ópticos, debido a que la longitud de onda de los electrones es mucho menor que la de los fotones "visibles".
El primer microscopio electrónico fue diseñado por Ernst Ruska y Max Knoll entre 1925 y 1930, quienes se basaron en los estudios de Louis-Victor de Broglie acerca de las propiedades ondulatorias de los electrones.
Un microscopio electrónico, como el de la imagen, funciona con un haz de electrones generados por un cañón electrónico, acelerados por un alto voltaje y focalizados por medio de lentes magnéticas (todo ello al alto vacío ya que los electrones son absorbidos por el aire). Un rayo de electrones atraviesa la muestra (debidamente deshidratada y en algunos casos recubierta de una fina capa metálica para resaltar su textura) y la amplificación se produce por un conjunto de lentes magnéticas que forman una imagen sobre una placa fotográfica o sobre una pantalla sensible al impacto de los electrones que transfiere la imagen formada a la pantalla de un ordenador. Los microscopios electrónicos producen imágenes sin ninguna clase de información de color, puesto que este es una propiedad de la luz y no hay una forma posible de reproducir este fenómeno mediante los electrones; sin embargo, es posible colorear las imágenes posteriormente, aplicando técnicas de retoque digital a través del ordenador.